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1. Introduction

Let ξ1, ξ2, · · · ,Xn be independent random variables with Eξi = 0 and

n∑
i=1

Eξ2
i = 1.

Let Wn =
∑n

i=1 ξi. Consider the non-linear statistic

Tn = Wn + ∆,

where ∆ = ∆(ξi, 1 ≤ i ≤ n).

Assume that ∆→ 0 in probability. Then

Tn
d.→ Z,

provided the Lindeberg condition is satisfied, where Z is the standard
normal random variable.



Question: What is the error of the approximation?

sup
x
|P(Tn ≥ x)− P(Z ≥ x)| = ?

and
P(Tn ≥ x)

P(Z ≥ x)
= 1 + ??

The error of normal approximation for Wn is well understood.
Can we establish the error of

P(Tn ≥ x)− P(Wn ≥ x)?



If E|∆|p <∞, p > 0, then it is easy to see that

sup
x
|P(Tn ≥ x)− P(Z ≥ x)|

≤ sup
x
|P(Wn ≥ x)− P(Z ≥ x)|+ 2

(
E|∆|p

)1/(1+p)
.

Remark: The bound is best possible.

Observe that

P(Tn ≥ x)− P(Wn ≥ x) ≤ P(x−∆ ≤ Wn < x),

P(Tn ≥ x)− P(Wn ≥ x) ≥ −P(x ≤ Wn < x−∆).



Aim: Establish Randomized Concentration Inequality

P(∆1 ≤ Wn ≤ ∆2),

where ∆1 and ∆2 are measurable functions of {ξi, 1 ≤ i ≤ n}.



2. Randomized Concentration Inequalities

Recall ξi, 1 ≤ i ≤ n are independent random variables with Eξi = 0
and

∑n
i=1 Eξ2

i = 1. Let W =
∑n

i=1 ξi, ∆1 and ∆2 be measurable
functions of {ξj, 1 ≤ j ≤ n}.

Chen and Shao (2007):

P(∆1 ≤ W ≤ ∆2)

≤ 2
n∑

i=1

E|ξi|3 + E|W(∆2 −∆1)|

+

n∑
i=1

E|ξi(∆1 −∆
(i)
1 )|+

n∑
i=1

E|ξi (∆2 −∆
(i)
2 )|,

where ∆
(i)
1 and ∆

(i)
2 are measurable functions of {ξj, j 6= i}.



The term E|W(∆2 −∆1)| can be replaced by E|∆2 −∆1|, which
makes it possible to establish a sharp Cramér type moderate deviation
for self-normalized non-linear statistics in Shao and Zhou (2016).

Shao and Winxin Zhou (2016):

P(∆1 ≤ W ≤ ∆2)

≤ 21
n∑

i=1

E|ξi|3 + 6 E|∆2 −∆1|

+4
n∑

i=1

E|ξi(∆1 −∆
(i)
1 )|+ 4

n∑
i=1

E|ξi (∆2 −∆
(i)
2 )|,

where ∆
(i)
1 and ∆

(i)
2 are measurable functions of {ξj, j 6= i}.



Remark: In the above inequalities, it is presumed that ∆1 ≤ ∆2.
Recall that our original aim is to bound

P(W ≤ ∆2)− P(W ≤ ∆1).

When E∆1 = E∆2, one would expect to have a better bound.

I A refined randomized concentration inequality

Lei and Shao (2021):

|P(W ≤ ∆)− EΦ(∆)| ≤ 300
n∑

i=1

E|ξi|3 + 4
n∑

i=1

E|ξi(∆−∆(i))|

+11
n∑

i=1

Eξ2
i E|∆−∆(i)|+ 25

n∑
i=1

n∑
j=1

Eξ2
j E|ξi(∆−∆(j))|,

where ∆(i) is any function of {ξj, j 6= i}.
It’s not clear if the red part could be removed.



I A randomized exponential concentration inequality

Shao (2010): Let γ =
∑n

i=1 E|ξi|3. Then for λ ≥ 0,

Eeλ(W+∆)I(∆1 ≤ W + ∆ ≤ ∆2)

≤ (Ee2λ(W+∆))1/2 exp(− 1
64γ2 )

+4eλδ
{

Eeλ(W+∆)|W|(|∆2 −∆1|+ 2γ)

+2
n∑

i=1

Eeλ(W(i)+∆(i))|ξi|(|∆1 −∆
(i)
1 |+ |∆2 −∆

(i)
2 |)

+

n∑
i=1

E|∆−∆(i)|min(|ξi|, |∆−∆(i)|)(3 + λ(|∆2 −∆1|+ 2γ))

max
(
eλ(W+∆), eλ(W(i)+∆(i))

)}
where W(i) = W − ξi.



In particular, we have

For λ = 0,

P(∆1 ≤ W + ∆ ≤ ∆2)

≤ 64γ + E|W||∆2 −∆1|

+2
n∑

i=1

E|ξi|(|∆1 −∆
(i)
1 )|+ |∆2 −∆

(i)
2 |)

+3
n∑

i=1

E|∆−∆(i)|min(|ξi|, |∆−∆(i)|).

For ∆1 ≥ x and λ = x, we could establish an exponential
inequality for P(∆1 ≤ W + ∆ ≤ ∆2).



The proof is based on the Stein method. The inequality may
provide a useful tool to prove the Cramér type moderate
deviation for Studentized statistics.



I An application to U-statistic

Let X1,X2, · · · ,Xn be a sequence of independent and identically
distributed random variables, and let h(x, y) be a real-valued Borel
measurable symmetric function, i.e., h(x, y) = h(y, x). Define the
U-statistic with the kernel h by

Un =
2

n(n− 1)

∑
1≤i<j≤n

h(Xi,Xj).

Let g(x) = Eh(x,X2) and σ2
1 = Eg2(X1). Assume σ1 > 0. It is known

that √
nUn

2σ1
= W + ∆,

where W =
1√
nσ1

n∑
i=1

g(Xi),

∆ =

√
n

n(n− 1)σ1

∑
1≤i<j≤n

{h(Xi,Xj)− g(Xi)− g(Xj)}.



Let

∆(l) =

√
n

n(n− 1)σ1

∑
1≤i<j≤n,i6=l,j6=l

{h(Xi,Xj)− g(Xi)− g(Xj)}.

One can prove that

E∆2 ≤ σ2

2(n− 1)σ2
1

and

E|∆−∆(l)|2 ≤ σ2

n(n− 1)σ2
1
.



Therefore, we have

Assume that Eh(X1,X2) = 0 and σ2 = Eh2(X1,X2) <∞. Then

sup
z
|P(

√
nUn

2σ1
≤ z)− Φ(z)|

≤ 2σ
(n− 1)1/2σ1

+
9E|g(X1)|3

n1/2σ3
1

.

Applications: Multisample U-statistics, L-statistics, Random
sums, functional of non-linear statistics, the Cramér type
moderate deviation for self-normalized non-linear statistics, ...



3. Randomized Concentration Inequality in Rd

Let {ξi : 1 ≤ i ≤ n} be a family of Rd-valued independent random
vectors satisfying Eξi = 0 and

∑n
i=1 Eξiξ

T
i = Id. Let

W =

n∑
i=1

ξi.

For any convex set A ⊂ Rd and any ε > 0, let

Aε = {y ∈ Rd : ‖y− x‖ ≤ ε, x ∈ A}.



I A concentration inequality

Let

γ =

n∑
i=1

E‖ξi‖3.

Chen and Fang (2011): For any ε > 0,

P(W ∈ A4γ+ε \ A4γ) ≤ Cd1/2(ε+ γ).



I A randomized concentration inequality

Shao and Zhang (2021)

Let ∆ be a nonnegative random variable. Then for any convex
set A ⊂ Rd,

P
(
W ∈ A4γ+∆ \ A4γ)
≤ 19d1/2γ + 2E

{
‖W‖∆

}
+ 2

n∑
i=1

E
{
‖ξi‖|∆−∆(i)|

}
,

where ∆(i) is any random variable independent of ξi.

Remark: It would be interesting if d1/2 can be replaced by d1/4.
and E

{
‖W‖∆

}
by E|∆|.



4. Berry–Esseen Bounds for Multivariate Nonlinear
Statistics

Let ξ1, . . . , ξn be Rd-valued random element satisfying Eξi = 0 and∑n
i=1 Eξiξ

T
i = Id and let W =

∑n
i=1 ξi. Let C be the class of convex

sets in Rd.

Bentkus (1986):

sup
A∈C

∣∣P(W ∈ A)− P(Z0,Id ∈ A)
∣∣ ≤ Cd1/4

n∑
i=1

E‖ξi‖3,

where Zµ,Σ ∼ N(µ,Σ) and C is an absolute constant.

Remark: It is believed that the above bound is best possible.



Let T be a non-linear statistic

T = W + D, where D = D(ξ1, . . . , ξn).

Shao and Zhang (2021):

sup
A∈C

∣∣P(T ∈ A)− P(Z ∈ A)
∣∣

≤ 259d1/2γ + 2E
{
‖W‖∆

}
+ 2

n∑
i=1

E
{
‖ξi‖|∆−∆(i)|

}
,

for any random variables ∆ and (∆(i))1≤i≤n such that ∆ ≥ ‖D‖
and ∆(i) is independent of ξi.

Remark: It seems challenging to replace d1/2 by d1/4.

The result provides a convergence rate of order O(n−1/2) for a
wide class of non-linear statistics.



4. Applications

I Stochastic Gradient Decent Algorithms (SGD)

Let f : Θ→ R be a smooth function, where Θ ⊂ Rd. Consider the
problem of searching for the minimum point θ∗. Assume that

f (θ) = E
{

F(θ,X)
}
.

SGD:

Let θ0 ∈ Rd be an initial value (might be random). For n ≥ 1, we
update θn by

θn = θn−1 − `n∇Fn(θn−1) = θn−1 − `n(∇f (θn−1) + ζn),

where `n is the learning rate, Fi(θ) = F(θ,Xi) and
ζn = ∇Fn(θn−1)−∇f (θn−1).



Consider the averaged version

θ̄n =
1
n

n−1∑
i=0

θi.

Write

ζn = ∇Fn(θn−1)−∇f (θn−1)

= ∇Fn(θ∗)−∇f (θ∗)︸ ︷︷ ︸
ξn

+
{
∇Fn(θn−1)−∇Fn(θ∗)

}
−
{
∇f (θn−1)−∇f (θ∗)

}︸ ︷︷ ︸
ηn:=g(θn−1,Xn)

.



It follows that

√
n(θ̄n − θ∗) =

1√
n

n−1∑
i=1

Qiξi +
1√
n

n−1∑
i=1

Qiηi + D2,

and D2 is a remainder term and Qi is a nonrandom matrix depending
only on ∇2f (θ∗).



Regularity conditions

(i) ‖θ0 − θ∗‖4 ≤ τ0

(ii) max1≤i≤n E ‖ξi‖4 ≤ τ 4, supx‖g(θ, x)‖ ≤ c1‖θ − θ∗‖.
(iii) The function f is L-smooth and strongly convex with convexity

constant µ > 0. That is, f is twice differentiable and for all
θ ∈ Rd,

µId 4 ∇2f (θ) 4 LId. (1)



(iv) There exist positive constants c2 and β such that for all θ such
that ‖θ − θ∗‖ ≤ β,∥∥∇2f (θ)−∇2f (θ∗)

∥∥
S ≤ c2

∥∥θ − θ∗∥∥. (2)

Here, ‖A‖S =
√
λmax(ATA) is the spectral norm.

I CLT for SGD

Polyak and Juditsky (1992): If `n = a0n−α , then

√
n(θ̄n − θ∗)

d.→ N(0,Σ) for some Σ > 0.



I Berry-Esseen bound for SGD

Shao and Zhang (2021) :

Let `n = a0n−α where 1/2 < α ≤ 1. Assume that the regular
conditions are satisfied. Then we have for α ∈ (1/2, 1),

sup
A∈C

∣∣∣P[√nΣ
−1/2
n (θ̄n − θ∗) ∈ A

]
− P[Z ∈ A]

∣∣∣
≤ C

(
d3/2 + τ 3 + τ 3

0
)
(d1/2n−1/2 + n−α+1/2).

If `n = a0n−1 with a0λmin(∇2f (θ)) ≥ 1 for all θ ∈ Θ, we have

sup
A∈C

∣∣∣P[√nΣ
−1/2
n (θ̄n − θ∗) ∈ A

]
− P[Z ∈ A]

∣∣∣
≤ Cd1/2n−1/2(log n)3(d3/2 + τ 3 + τ 3

0 ).



I Application to M-estimators

Let X,X1, . . . ,Xn be i.i.d. random variables that take values in a space
X .

Let Θ ⊂ Rd be a parameter space. For each θ ∈ Θ, let mθ(·) : X → R
be a loss function. Assume that θ 7→ mθ(x) is twice differentiable
with respect to θ for every x ∈ X . Denote

Mn(θ) =
1
n

n∑
i=1

mθ(Xi), M(θ) = Emθ(X).

Let θ∗ be the unique point that minimizes the function M(θ). θ̂n is
called an M-estimator of θ∗ if it minimizes the function Mn(θ).



I Asymptotic properties of θ̂n − θ∗

Under some regularity conditions, it is known that (see, e.g., Van
der Vaart (1998))

√
n(θ̂n − θ∗)

d.→ N(0,Σ).

Bentkus et al. (1997) proved a Berry–Esseen bound of order
n−1/2 for M-estimators under some regularity conditions and a
consistency condition

P(|θ̂n − θ∗| ≥ δ) ≤ a n−1/2.

Here we apply our general result to prove a Berry–Esseen bound
under some simpler conditions.



I Regularity conditions
(i) The function θ 7→ mθ(x) is twice differentiable for all x ∈ X , and

M(θ)−M(θ∗) ≥ µ‖θ − θ∗‖2, (Convexity)

|mθ(x)− mθ∗(x)| ≤ m1(x)‖θ − θ∗‖, ∀ x ∈ X , (Lipschitz)

‖m̈θ(x)− m̈θ∗(x)‖ ≤ m2(x)‖θ − θ∗‖, ∀ x ∈ X . (Lipschitz)

m̈θ∗(x) 4 m3(x)Id, (Boundedness at θ∗)

(ii) For m1,m2,m3,

‖m1(X)‖9 ≤ c1, ‖m2(X)‖4 ≤ c2, ‖m3(X)‖4 ≤ c3,

where ‖Y‖p = (E |Y|p)1/p.
(iii) Let ξi = ṁθ∗(Xi), Σ = E

{
ξiξ

T
i
}

and V = E{m̈θ∗(X)}.
Moreover, assume that

λ1 ≤ λ(Σ) ≤ λ2 λ(V) ≥ λ3, ‖ξ1‖4 ≤ c4d1/2.



I Berry–Esseen bounds for M - estimators

Shao and Zhang (2021):

sup
A∈C

∣∣∣P[n1/2Σ−1/2V(θ̂n − θ∗) ∈ A
]
− P(Z ∈ A)

∣∣∣ ≤ Cd2n−1/2,

where C > 0 is a constant depending only on
c1, c2, c3, c4, µ, λ1, λ2 and λ3.
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