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1. Introduction

Let &1,&, - -+, X, be independent random variables with E¢; = 0 and

En:Eg,? = 1.
i=1

Let W, = >_"_, &. Consider the non-linear statistic
T, =W, +A,
where A = A(§,1 <i<n).
Assume that A — 0 in probability. Then
T, % 7,

provided the Lindeberg condition is satisfied, where Z is the standard
normal random variable.



@ Question: What is the error of the approximation?
sup |P(T, > x) — P(Z>x)| ="
X

and
P(T, > x)

P(Z > x)
@ The error of normal approximation for W, is well understood.
Can we establish the error of

=1+77

P(T, > x) — P(W, > x)?



e If E|AJP < oo, p > 0, then it is easy to see that
sup |P(T, > x) — P(Z > x)|
X

1/(1+,
< sup |P(W, > x) — P(Z > 2)] +2(EAY) [t

e Remark: The bound is best possible.

@ Observe that
P(T,>x)—P(W,>x) <Px—A<W,<x),

P(T,>x)—P(W,>x) > —-Px< W, <x—A).



@ Aim: Establish Randomized Concentration Inequality
P(Al < Wn < AZ);

where A} and A, are measurable functions of {&;, 1 < i < n}.



2. Randomized Concentration Inequalities

Recall ¢;, 1 < i < n are independent random variables with E§; = 0

and > 7, EE =1. LetW = > &, Ay and A, be measurable
functions of {&;,1 <j < n}.

@ Chen and Shao (2007):
P(A < W< Ay)

< 2) EGP+EW(A — Ay
i=1

+ Y Elg(A - A+ ST ElE (A - AP,
i=1 i=1

where Agi) and Ag) are measurable functions of {&;,j # i}.



The term E|W (A, — Aj)| can be replaced by E|A, — Aj|, which
makes it possible to establish a sharp Cramér type moderate deviation
for self-normalized non-linear statistics in Shao and Zhou (2016).

@ Shao and Winxin Zhou (2016):
P(A < W< Ay)

< 21 EIGP +6E|A; — A
i=1

+43 " ElG(A - AV + 43T Bl (A - AD)),
i=1 i=1

where Agi) and Ag) are measurable functions of {&;,j # i}.



@ Remark: In the above inequalities, it is presumed that A} < A,.
Recall that our original aim is to bound

P(W < Ay) — P(W < Ay).

When EA| = EA,, one would expect to have a better bound.
» A refined randomized concentration inequality

@ Lei and Shao (2021):

IP(W < A) — E®(A \<SOOZE]§,P—|—4ZE]§,A AD)]

i=1

+11 ZE§ E|A - AD| + 2522E52E\£, (A — A,
i=1 j=l1
where A1) is any function of {&;,j # i}.
@ It’s not clear if the red part could be removed.



» A randomized exponential concentration inequality

e Shao (2010): Lety = >_''_, E|&[*. Then for A > 0,
ESVFAIA < W+ A<A)

< (EPO) e )
gl

+4 { B (|Ag - Ay +29)

- (@) O] i i
+237 E g (A - AP 4142 - AD)
i=1

+> EIA — ADmin(|&], |A = AD) B+ A(|A; — Ay| +27)
i=1

(e/\(W-i-A) A(W<f>+A<f)))}

max ,e

where W) = W — ¢;.



In particular, we have
@ For A =0,

P(A < W+A<A)
§ 64’)/+E’WHA2 — A]‘

+2 3 El6l (1A — AV + A2 - Al)
i=1

+3> E|A — AW min(|g],|A — AD)).

i=1

@ For A; > x and )\ = x, we could establish an exponential
inequality for P(A; < W + A < Ap).



@ The proof is based on the Stein method. The inequality may
provide a useful tool to prove the Cramér type moderate
deviation for Studentized statistics.



» An application to U-statistic

Let X1, Xp, - -+ , X, be a sequence of independent and identically
distributed random variables, and let /(x, y) be a real-valued Borel
measurable symmetric function, i.e., i(x,y) = h(y, x). Define the
U-statistic with the kernel & by

Un= -y Z h(Xi, X;).

1<L</<n
Let g(x) = Eh(x,X3) and 012 = Eg*(X1). Assume o > 0. It is known
that
U,
@ =W+ A’
20
1 n
where W = T Z g(X;
A= > {hX X)) — g(X) — 8(X)}

1<l<]<}’l



AD= VRN X)) - (%) - £(X).

nn—1)o
( )o1 |<i<j<n,itlj#l

One can prove that

o2

EN> < ——
~2(n—1)o?

and

0.2

EA-AVP < ———
| "< n(n—1)o?



Therefore, we have
o Assume that Eh(X1,X;) = 0 and 0> = Eh*(X1,X,) < oo. Then

VnU,
P <z)—®
sgp\ ( 20, <z)—2(2)|
- 20 9E|g(X1)|?
— (n—1)"20, n/2g3

@ Applications: Multisample U-statistics, L-statistics, Random
sums, functional of non-linear statistics, the Cramér type
moderate deviation for self-normalized non-linear statistics, ...



3. Randomized Concentration Inequality in R?

Let {& : 1 <i < n} be afamily of R?-valued independent random
vectors satisfying E§; = 0 and ) ), E¢ET =1, Let

w=>"¢.
i=1

For any convex set A C R and any ¢ > 0, let

A€ = {yERd Sy — x|l <e,x € A}



» A concentration inequality
Let
n
3
v=Y El&l’.
i=1

@ Chen and Fang (2011): For any € > 0,

P(W € A\ A%) < Cd' P (e + 7).



» A randomized concentration inequality

@ Shao and Zhang (2021)

Let A be a nonnegative random variable. Then for any convex
setA C RY,

P(W € AV T2\ AY)

< 194" Py 2E{ WA} +2 3 E{jélllA - A0},
i=1

where A is any random variable independent of &;.

@ Remark: It would be interesting if @'/? can be replaced by d'/*.
and E{||W[A} by E|A|.



4. Berry—Esseen Bounds for Multivariate Nonlinear
Statistics

Let &, ..., &, be R%-valued random element satisfying E&; = 0 and
S EGEN =1and let W = 77 & Let C be the class of convex
sets in RY.

@ Bentkus (1986):
sup|P(W € A) — P(Zo,, € A)| < Cd'/* > E||&|P,
Aec i=1

where Z,, »» ~ N(u,3) and C is an absolute constant.

o Remark: It is believed that the above bound is best possible.



Let T be a non-linear statistic

T =W+ D, where D=D(&,...,&).

@ Shao and Zhang (2021):

sup|P(T € A) — P(Z € A)|
AeC

< 259d"7y +2E{|W(|A} +2) " E{|&lla - AD},

i=1
for any random variables A and (A®)), <<, such that A > ||D||
and A® is independent of &;.
@ Remark: It seems challenging to replace d'/2 by d'/*.

@ The result provides a convergence rate of order O(n~'/?) for a
wide class of non-linear statistics.



4. Applications

» Stochastic Gradient Decent Algorithms (SGD)

Let f : © — R be a smooth function, where © C R“. Consider the
problem of searching for the minimum point 6*. Assume that

f(0) =E{F(6,X)}.

e SGD:

Let 6y € R be an initial value (might be random). Forn > 1, we
update 6, by

en — 9,,71 - EnVFn(enfl) — 9,1,1 - En(vf(enfl) + Cn)a

where /, is the learning rate, F;(0) = F(0,X;) and
Gn = VFu(0h—1) — Vf(0n-1).



@ Consider the averaged version

n—1
b= 130,
n i=0
o Write
Cn = vFn(an—l) - vf(gn—l)
= VFu(0") — Vf(0")
én
+ {VFn(‘gn—l) - an(e*)} - {vf(en—l) - Vf(g*)} :
77n::8(9n—1 7Xn)



It follows that

n—1

_ . _L . 1
\/ﬁ(en—a)_ﬁ;Ql&+

n—1
—= Y Qi+ D,
(L

and D; is a remainder term and Q; is a nonrandom matrix depending
only on V£ (6%).



Regularity conditions

(i) 60 —0*[la < 70
(i) maxi<i< E[&]* < 7 sup,g(8,x)]| < ei]|0 — 07|
(iii) The function f is L-smooth and strongly convex with convexity

constant 4 > 0. That is, f is twice differentiable and for all
6 € R4,

pla < Vf(0) < L. (1)



(iv) There exist positive constants ¢ and 3 such that for all § such
that |0 — 0*|| < 5,

IV (0) = V£ (6| < ea|6 — 67]]. 2
Here, ||Alls = v/ Amax(ATA) is the spectral norm.

» CLT for SGD

@ Polyak and Juditsky (1992): If ¢,, = apn™“ , then

Vi@, —0%) 5 N(0,%)  for some ¥ > 0.



» Berry-Esseen bound for SGD

@ Shao and Zhang (2021) :

Let ¢, = apn™® where 1/2 < o < 1. Assume that the regular
conditions are satisfied. Then we have for a € (1/2,1),

sup|P[v/nSy /26, — 0%) € A] — P[Z € A]‘
AeC

< C(d 473 +73) (@2 V2 g ot /2y,
If £, = apn™" with apAmin (V2£(6)) > 1forall § € ©, we have

sup|P[vny (8, — ) € A] P[ZEA]’
AeC

< Cdl/zrfl/z(logn)3(d3/2 + 734+ TS’).



» Application to M-estimators

Let X, X1, ..., X, be i.i.d. random variables that take values in a space
X.

Let © C RY be a parameter space. Foreach § € O, let mg(-) : X — R
be a loss function. Assume that 6 — my(x) is twice differentiable
with respect to 6 for every x € X'. Denote

M., (6) = % > mg(Xi), M(6) = Emg(X).
i=1

Let 0* be the unique point that minimizes the function M(). ,, is
called an M-estimator of #* if it minimizes the function M, (0).



» Asymptotic properties of 6, — 0"

@ Under some regularity conditions, it is known that (see, e.g., Van
der Vaart (1998))

Va6, — 0%) 5 N, %).

o Bentkus et al. (1997) proved a Berry—Esseen bound of order
n~1/2 for M-estimators under some regularity conditions and a
consistency condition

P(|6, — 0*| > 6) < an"'/%,

e Here we apply our general result to prove a Berry—Esseen bound
under some simpler conditions.



» Regularity conditions

(i) The function € — my(x) is twice differentiable for all x € X, and

M(0) — M(0%) > || — 6%||%, (Convexity)
|mg(x) — mg~(x)| < my(x)||0 —6%||, Vxe X, (Lipschitz)
||l (x) — g« (x)|| < ma(x)||6 —0%]|, Vxe& X. (Lipschitz)
mg«(x) < m3(x)Iz, (Boundedness at 0%)
(ii) For my, my, m3,
lmi(X)llo < c1, [ma(X)lla < 2, [Im3(X) |4 < c3,
where [[Y],, = (E[¥]?)"/.

(iii) Let & = g (X;), & = E{&&] } and V = E{ing~(X)}.
Moreover, assume that

M<AED) <A AV) >, € ]la < ead'?



» Berry—Esseen bounds for M - estimators

@ Shao and Zhang (2021):

sup P[n1/22_1/2V(én —0") €Al -P(Z¢c A)’ < Cd*n~1/?,
AeC

where C > 0 is a constant depending only on
C1,C2,C3,C4, 0, )\1, )\2 and )\3.
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