Randomized Concentration Inequalities

Qi-Man Shao

Southern University of Science and Technology

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Introduction

- 2 Randomized Concentration Inequalities
- Solution Randomized Concentration Inequality in R^d
- Berry-Esseen Bounds for Multivariate Non-linear Statistics

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● のへで

Applications

1. Introduction

Let ξ_1, ξ_2, \dots, X_n be independent random variables with $E\xi_i = 0$ and

$$\sum_{i=1}^{n} E\xi_i^2 = 1.$$

Let $W_n = \sum_{i=1}^n \xi_i$. Consider the non-linear statistic

 $T_n = W_n + \Delta,$

where $\Delta = \Delta(\xi_i, 1 \le i \le n)$.

Assume that $\Delta \rightarrow 0$ in probability. Then

$$T_n \stackrel{d_i}{\to} Z,$$

provided the Lindeberg condition is satisfied, where Z is the standard normal random variable.

• Question: What is the error of the approximation?

$$\sup_{x} |P(T_n \ge x) - P(Z \ge x)| = ?$$

and

$$\frac{P(T_n \ge x)}{P(Z \ge x)} = 1 + ??$$

• The error of normal approximation for W_n is well understood. Can we establish the error of

$$P(T_n \ge x) - P(W_n \ge x)?$$

・ロト・聞ト・ヨト・ヨト ヨー ろくぐ

• If
$$E|\Delta|^p < \infty$$
, $p > 0$, then it is easy to see that

$$\sup_{x} |P(T_n \ge x) - P(Z \ge x)|$$

$$\leq \sup_{x} |P(W_n \ge x) - P(Z \ge x)| + 2\left(E|\Delta|^p\right)^{1/(1+p)}.$$

• **Remark:** The bound is best possible.

• Observe that

$$P(T_n \ge x) - P(W_n \ge x) \le P(x - \Delta \le W_n < x),$$

$$P(T_n \ge x) - P(W_n \ge x) \ge -P(x \le W_n < x - \Delta).$$

• Aim: Establish Randomized Concentration Inequality

 $P(\Delta_1 \leq W_n \leq \Delta_2),$

where Δ_1 and Δ_2 are measurable functions of $\{\xi_i, 1 \le i \le n\}$.

2. Randomized Concentration Inequalities

Recall ξ_i , $1 \le i \le n$ are independent random variables with $E\xi_i = 0$ and $\sum_{i=1}^{n} E\xi_i^2 = 1$. Let $W = \sum_{i=1}^{n} \xi_i$, Δ_1 and Δ_2 be measurable functions of $\{\xi_j, 1 \le j \le n\}$.

• Chen and Shao (2007):

$$P(\Delta_{1} \leq W \leq \Delta_{2})$$

$$\leq 2\sum_{i=1}^{n} E|\xi_{i}|^{3} + \frac{E|W(\Delta_{2} - \Delta_{1})|}{+\sum_{i=1}^{n} E|\xi_{i}(\Delta_{1} - \Delta_{1}^{(i)})| + \sum_{i=1}^{n} E|\xi_{i}(\Delta_{2} - \Delta_{2}^{(i)})|,$$

where $\Delta_1^{(i)}$ and $\Delta_2^{(i)}$ are measurable functions of $\{\xi_j, j \neq i\}$.

The term $E|W(\Delta_2 - \Delta_1)|$ can be replaced by $E|\Delta_2 - \Delta_1|$, which makes it possible to establish a sharp Cramér type moderate deviation for self-normalized non-linear statistics in Shao and Zhou (2016).

• Shao and Winxin Zhou (2016):

$$P(\Delta_{1} \leq W \leq \Delta_{2})$$

$$\leq 21 \sum_{i=1}^{n} E|\xi_{i}|^{3} + 6 E|\Delta_{2} - \Delta_{1}|$$

$$+4 \sum_{i=1}^{n} E|\xi_{i}(\Delta_{1} - \Delta_{1}^{(i)})| + 4 \sum_{i=1}^{n} E|\xi_{i}(\Delta_{2} - \Delta_{2}^{(i)})|,$$

where $\Delta_1^{(i)}$ and $\Delta_2^{(i)}$ are measurable functions of $\{\xi_j, j \neq i\}$.

• Remark: In the above inequalities, it is presumed that $\Delta_1 \leq \Delta_2$. Recall that our original aim is to bound

$$P(W \le \Delta_2) - P(W \le \Delta_1).$$

When $E\Delta_1 = E\Delta_2$, one would expect to have a better bound.

- ► A refined randomized concentration inequality
 - Lei and Shao (2021):

$$|P(W \le \Delta) - E\Phi(\Delta)| \le 300 \sum_{i=1}^{n} E|\xi_i|^3 + 4 \sum_{i=1}^{n} E|\xi_i(\Delta - \Delta^{(i)})| + 11 \sum_{i=1}^{n} E\xi_i^2 E|\Delta - \Delta^{(i)}| + 25 \sum_{i=1}^{n} \sum_{j=1}^{n} E\xi_j^2 E|\xi_i(\Delta - \Delta^{(j)})|,$$

where $\Delta^{(i)}$ is any function of $\{\xi_j, j \neq i\}$.

• It's not clear if the red part could be removed.

► A randomized exponential concentration inequality

• Shao (2010): Let
$$\gamma = \sum_{i=1}^{n} E|\xi_i|^3$$
. Then for $\lambda \ge 0$,
 $Ee^{\lambda(W+\Delta)}I(\Delta_1 \le W + \Delta \le \Delta_2)$
 $\le (Ee^{2\lambda(W+\Delta)})^{1/2} \exp(-\frac{1}{64\gamma^2})$
 $+4e^{\lambda\delta} \Big\{ Ee^{\lambda(W+\Delta)} |W| (|\Delta_2 - \Delta_1| + 2\gamma)$
 $+2\sum_{i=1}^{n} Ee^{\lambda(W^{(i)} + \Delta^{(i)})} |\xi_i| (|\Delta_1 - \Delta_1^{(i)}| + |\Delta_2 - \Delta_2^{(i)}|)$
 $+\sum_{i=1}^{n} E|\Delta - \Delta^{(i)}| \min(|\xi_i|, |\Delta - \Delta^{(i)}|) (3 + \lambda(|\Delta_2 - \Delta_1| + 2\gamma))$
 $\max\left(e^{\lambda(W+\Delta)}, e^{\lambda(W^{(i)} + \Delta^{(i)})}\right) \Big\}$

where $W^{(i)} = W - \xi_i$.

 In particular, we have

• For
$$\lambda = 0$$
,

$$P(\Delta_{1} \leq W + \Delta \leq \Delta_{2}) \leq 64\gamma + E|W||\Delta_{2} - \Delta_{1}| + 2\sum_{i=1}^{n} E|\xi_{i}|(|\Delta_{1} - \Delta_{1}^{(i)})| + |\Delta_{2} - \Delta_{2}^{(i)}|) + 3\sum_{i=1}^{n} E|\Delta - \Delta^{(i)}|\min(|\xi_{i}|, |\Delta - \Delta^{(i)}|).$$

For Δ₁ ≥ x and λ = x, we could establish an exponential inequality for P(Δ₁ ≤ W + Δ ≤ Δ₂).

• The proof is based on the Stein method. The inequality may provide a useful tool to prove the Cramér type moderate deviation for Studentized statistics.

► An application to U-statistic

Let X_1, X_2, \dots, X_n be a sequence of independent and identically distributed random variables, and let h(x, y) be a real-valued Borel measurable symmetric function, i.e., h(x, y) = h(y, x). Define the *U*-statistic with the kernel *h* by

$$U_n = \frac{2}{n(n-1)} \sum_{1 \le i < j \le n} h(X_i, X_j).$$

Let $g(x) = Eh(x, X_2)$ and $\sigma_1^2 = Eg^2(X_1)$. Assume $\sigma_1 > 0$. It is known that

$$\frac{\sqrt{n}U_n}{2\sigma_1} = W + \Delta,$$

where
$$W = \frac{1}{\sqrt{n}\sigma_1} \sum_{i=1}^n g(X_i),$$

$$\Delta = \frac{\sqrt{n}}{n(n-1)\sigma_1} \sum_{1 \le i < j \le n} \{h(X_i, X_j) - g(X_i) - g(X_j)\}.$$

Let

$$\Delta^{(l)} = \frac{\sqrt{n}}{n(n-1)\sigma_1} \sum_{1 \le i < j \le n, i \ne l, j \ne l} \{h(X_i, X_j) - g(X_i) - g(X_j)\}.$$

One can prove that

$$E\Delta^2 \le \frac{\sigma^2}{2(n-1)\sigma_1^2}$$

and

$$E|\Delta - \Delta^{(l)}|^2 \le \frac{\sigma^2}{n(n-1)\sigma_1^2}.$$

▲□▶▲圖▶▲臣▶▲臣▶ = 臣 = のへの

Therefore, we have

• Assume that $Eh(X_1, X_2) = 0$ and $\sigma^2 = Eh^2(X_1, X_2) < \infty$. Then

$$\sup_{z} |P(\frac{\sqrt{n}U_{n}}{2\sigma_{1}} \le z) - \Phi(z)| \\ \le \frac{2\sigma}{(n-1)^{1/2}\sigma_{1}} + \frac{9E|g(X_{1})|^{3}}{n^{1/2}\sigma_{1}^{3}}.$$

 Applications: Multisample U-statistics, L-statistics, Random sums, functional of non-linear statistics, the Cramér type moderate deviation for self-normalized non-linear statistics, ... Let $\{\xi_i : 1 \le i \le n\}$ be a family of \mathbb{R}^d -valued independent random vectors satisfying $E\xi_i = 0$ and $\sum_{i=1}^n E\xi_i\xi_i^T = I_d$. Let

$$W = \sum_{i=1}^{n} \xi_i.$$

For any convex set $A \subset \mathbb{R}^d$ and any $\epsilon > 0$, let

$$A^{\epsilon} = \{ y \in \mathbb{R}^d : ||y - x|| \le \epsilon, x \in A \}.$$

► A concentration inequality

Let

$$\gamma = \sum_{i=1}^n E \|\xi_i\|^3.$$

• Chen and Fang (2011): For any $\epsilon > 0$,

$$P(W \in A^{4\gamma+\epsilon} \setminus A^{4\gamma}) \le Cd^{1/2}(\epsilon+\gamma).$$

A randomized concentration inequality

• Shao and Zhang (2021)

Let Δ be a nonnegative random variable. Then for any convex set $A \subset R^d$,

$$P(W \in A^{4\gamma+\Delta} \setminus A^{4\gamma})$$

$$\leq 19d^{1/2}\gamma + 2E\{||W||\Delta\} + 2\sum_{i=1}^{n} E\{||\xi_i|||\Delta - \Delta^{(i)}|\},$$

where $\Delta^{(i)}$ is any random variable independent of ξ_i .

• Remark: It would be interesting if $d^{1/2}$ can be replaced by $d^{1/4}$. and $E\{||W||\Delta\}$ by $E|\Delta|$.

4. Berry–Esseen Bounds for Multivariate Nonlinear Statistics

Let ξ_1, \ldots, ξ_n be R^d -valued random element satisfying $E\xi_i = 0$ and $\sum_{i=1}^n E\xi_i\xi_i^T = I_d$ and let $W = \sum_{i=1}^n \xi_i$. Let C be the class of convex sets in R^d .

• Bentkus (1986):

$$\sup_{A \in \mathcal{C}} |P(W \in A) - P(Z_{0,I_d} \in A)| \le Cd^{1/4} \sum_{i=1}^n E ||\xi_i||^3,$$

where $Z_{\mu,\Sigma} \sim N(\mu, \Sigma)$ and *C* is an absolute constant.

• Remark: It is believed that the above bound is best possible.

Let *T* be a non-linear statistic

$$T = W + D$$
, where $D = D(\xi_1, ..., \xi_n)$.

• Shao and Zhang (2021):

$$\begin{split} \sup_{A \in \mathcal{C}} & \left| P(T \in A) - P(Z \in A) \right| \\ & \leq 259 d^{1/2} \gamma + 2E \big\{ \|W\|\Delta \big\} + 2 \sum_{i=1}^{n} E \big\{ \|\xi_i\| |\Delta - \Delta^{(i)}| \big\}, \end{split}$$

for any random variables Δ and $(\Delta^{(i)})_{1 \le i \le n}$ such that $\Delta \ge ||D||$ and $\Delta^{(i)}$ is independent of ξ_i .

- Remark: It seems challenging to replace $d^{1/2}$ by $d^{1/4}$.
- The result provides a convergence rate of order $O(n^{-1/2})$ for a wide class of non-linear statistics.

4. Applications

Stochastic Gradient Decent Algorithms (SGD)

Let $f : \Theta \to R$ be a smooth function, where $\Theta \subset R^d$. Consider the problem of searching for the minimum point θ^* . Assume that

 $f(\theta) = E\{F(\theta, X)\}.$

• SGD:

Let $\theta_0 \in \mathbb{R}^d$ be an initial value (might be random). For $n \ge 1$, we update θ_n by

 $\theta_n = \theta_{n-1} - \ell_n \nabla F_n(\theta_{n-1}) = \theta_{n-1} - \ell_n (\nabla f(\theta_{n-1}) + \zeta_n),$

where ℓ_n is the learning rate, $F_i(\theta) = F(\theta, X_i)$ and $\zeta_n = \nabla F_n(\theta_{n-1}) - \nabla f(\theta_{n-1})$.

• Consider the averaged version

$$\bar{\theta}_n = \frac{1}{n} \sum_{i=0}^{n-1} \theta_i.$$

• Write

$$\begin{split} \zeta_n &= \nabla F_n(\theta_{n-1}) - \nabla f(\theta_{n-1}) \\ &= \underbrace{\nabla F_n(\theta^*) - \nabla f(\theta^*)}_{\xi_n} \\ &+ \underbrace{\left\{ \nabla F_n(\theta_{n-1}) - \nabla F_n(\theta^*) \right\} - \left\{ \nabla f(\theta_{n-1}) - \nabla f(\theta^*) \right\}}_{\eta_n := g(\theta_{n-1}, X_n)}. \end{split}$$

▲□▶▲圖▶▲≣▶▲≣▶ = のへで

It follows that

$$\sqrt{n}(\bar{\theta}_n - \theta^*) = \frac{1}{\sqrt{n}} \sum_{i=1}^{n-1} Q_i \xi_i + \frac{1}{\sqrt{n}} \sum_{i=1}^{n-1} Q_i \eta_i + D_2,$$

and D_2 is a remainder term and Q_i is a nonrandom matrix depending only on $\nabla^2 f(\theta^*)$.

Regularity conditions

- (i) $\|\theta_0 \theta^*\|_4 \le \tau_0$
- (ii) $\max_{1 \le i \le n} \mathbb{E} \|\xi_i\|^4 \le \tau^4$, $\sup_x \|g(\theta, x)\| \le c_1 \|\theta \theta^*\|$.
- (iii) The function *f* is *L*-smooth and strongly convex with convexity constant $\mu > 0$. That is, *f* is twice differentiable and for all $\theta \in \mathbb{R}^d$,

$$\mu I_d \preccurlyeq \nabla^2 f(\theta) \preccurlyeq L I_d. \tag{1}$$

(iv) There exist positive constants c_2 and β such that for all θ such that $\|\theta - \theta^*\| \leq \beta$,

$$\left\|\nabla^2 f(\theta) - \nabla^2 f(\theta^*)\right\|_{\mathcal{S}} \le c_2 \left\|\theta - \theta^*\right\|.$$
 (2)

Here, $||A||_S = \sqrt{\lambda_{\max}(A^T A)}$ is the spectral norm.

CLT for SGD

• Polyak and Juditsky (1992): If $\ell_n = a_0 n^{-\alpha}$, then

$$\sqrt{n}(\bar{\theta}_n - \theta^*) \xrightarrow{d} N(0, \Sigma)$$
 for some $\Sigma > 0$.

Berry-Esseen bound for SGD

• Shao and Zhang (2021) :

Let $\ell_n = a_0 n^{-\alpha}$ where $1/2 < \alpha \le 1$. Assume that the regular conditions are satisfied. Then we have for $\alpha \in (1/2, 1)$,

$$\begin{split} \sup_{A \in \mathcal{C}} & \left| P \big[\sqrt{n} \Sigma_n^{-1/2} (\bar{\theta}_n - \theta^*) \in A \big] - P[Z \in A] \right| \\ & \leq \quad C \big(d^{3/2} + \tau^3 + \tau_0^3 \big) (d^{1/2} n^{-1/2} + n^{-\alpha + 1/2}). \end{split}$$

If $\ell_n = a_0 n^{-1}$ with $a_0 \lambda_{\min}(\nabla^2 f(\theta)) \ge 1$ for all $\theta \in \Theta$, we have

$$\begin{split} \sup_{A \in \mathcal{C}} & \left| P \big[\sqrt{n} \Sigma_n^{-1/2} (\bar{\theta}_n - \theta^*) \in A \big] - P[Z \in A] \right| \\ & \leq \quad C d^{1/2} n^{-1/2} (\log n)^3 (d^{3/2} + \tau^3 + \tau_0^3). \end{split}$$

|□▶▲@▶▲目▶▲目▶ | 目||���

Application to M-estimators

Let X, X_1, \ldots, X_n be i.i.d. random variables that take values in a space \mathcal{X} .

Let $\Theta \subset \mathbb{R}^d$ be a parameter space. For each $\theta \in \Theta$, let $m_{\theta}(\cdot) : \mathcal{X} \to \mathbb{R}$ be a loss function. Assume that $\theta \mapsto m_{\theta}(x)$ is twice differentiable with respect to θ for every $x \in \mathcal{X}$. Denote

$$\mathbb{M}_n(\theta) = \frac{1}{n} \sum_{i=1}^n m_\theta(X_i), \quad M(\theta) = Em_\theta(X).$$

Let θ^* be the unique point that minimizes the function $M(\theta)$. $\hat{\theta}_n$ is called an M-estimator of θ^* if it minimizes the function $\mathbb{M}_n(\theta)$.

- Asymptotic properties of $\hat{\theta}_n \theta^*$
 - Under some regularity conditions, it is known that (see, e.g., Van der Vaart (1998))

$$\sqrt{n}(\hat{\theta}_n - \theta^*) \xrightarrow{d} N(0, \Sigma).$$

• Bentkus et al. (1997) proved a Berry–Esseen bound of order $n^{-1/2}$ for M-estimators under some regularity conditions and a consistency condition

$$P(|\hat{\theta}_n - \theta^*| \ge \delta) \le a n^{-1/2}.$$

• Here we apply our general result to prove a Berry–Esseen bound under some simpler conditions.

Regularity conditions

(i) The function $\theta \mapsto m_{\theta}(x)$ is twice differentiable for all $x \in \mathcal{X}$, and

$$\begin{split} M(\theta) - M(\theta^*) &\geq \mu \|\theta - \theta^*\|^2, \quad \text{(Convexity)} \\ |m_{\theta}(x) - m_{\theta^*}(x)| &\leq m_1(x) \|\theta - \theta^*\|, \quad \forall x \in \mathcal{X}, \quad \text{(Lipschitz)} \\ \|\ddot{m}_{\theta}(x) - \ddot{m}_{\theta^*}(x)\| &\leq m_2(x) \|\theta - \theta^*\|, \quad \forall x \in \mathcal{X}. \quad \text{(Lipschitz)} \\ &\qquad \ddot{m}_{\theta^*}(x) \preccurlyeq m_3(x) I_d, \quad \text{(Boundedness at } \theta^*) \end{split}$$

(ii) For m_1, m_2, m_3 ,

$$||m_1(X)||_9 \le c_1, \quad ||m_2(X)||_4 \le c_2, \quad ||m_3(X)||_4 \le c_3,$$

where $||Y||_p = (\mathbb{E} |Y|^p)^{1/p}$. (iii) Let $\xi_i = \dot{m}_{\theta^*}(X_i), \Sigma = E \{\xi_i \xi_i^T\}$ and $V = E\{\ddot{m}_{\theta^*}(X)\}$. Moreover, assume that

 $\lambda_1 \leq \lambda(\Sigma) \leq \lambda_2 \quad \lambda(V) \geq \lambda_3, \quad \|\xi_1\|_4 \leq c_4 d^{1/2}.$

► Berry–Esseen bounds for M - estimators

• Shao and Zhang (2021):

$$\sup_{A\in\mathcal{C}} \left| P[n^{1/2}\Sigma^{-1/2}V(\hat{\theta}_n - \theta^*) \in A] - P(Z \in A) \right| \le Cd^2n^{-1/2},$$

where C > 0 is a constant depending only on $c_1, c_2, c_3, c_4, \mu, \lambda_1, \lambda_2$ and λ_3 .

- L.H.Y. Chen, L. Goldstein and Q.M. Shao (2011). Normal Approximation by Stein's Method. Springer .
- Q.M. Shao and W.X. ZHou (2016). Cramér type moderate deviation theorems for self-normalized processes. *Bernoulli* 22, 2029 2079.
- Q.M. Shao and Z.S. Zhang (2021), Berry Esseen bounds for multivariate nonlinear statistics with applications to M-estimators and stochastic gradient descent algorithms. *Bernoulli (to appear)*.

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへ⊙